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ABSTRACT

Caching at edge servers can smooth the temporal traffic
variability and reduce the service load of base stations in
wireless streaming. However, the assignment of the cached
content for possibly multiple versions of different video
sequences is still a challenging question in the context of
adaptive streaming. In this paper, we propose a wireless
video caching placement optimization problem for dynamic
adaptive video streaming that properly takes into account
the different rate-distortion (R-D) characteristics of the
video sequences. Our objective is to minimize the expected
video distortion by the optimal caching of compressed video
sequences, such that the clients can effectively access video
content storage and bandwidth constraints. We prove that
our optimization problem is a submodular maximization
problem subject to a knapsack constraint. A cost benefit
greedy algorithm is developed to obtain an approximate
solution with polynomial time complexity and theoretical
approximation guarantees. Simulation results demonstrate
significant video distortion reduction relative to different
baseline caching placement schemes.

CCS Concepts

•Mathematics of computing → Submodular opti-
mization and polymatroids; •Information systems→
Multimedia streaming;

Keywords

Dynamic adaptive video streaming; video-on-demand; dis-
tributed caching; submodular function maximization

1. INTRODUCTION
With the extensive growth of global mobile data traffic

and the widespread use of smart devices, wireless video
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streaming has experienced extensive growth and is com-
monly used for a wide range of applications, such as mobile
video services. Meanwhile, the population of mobile users
has become more heterogeneous in terms of mobile devices,
requested contents, and network connectivity. Dynamic
adaptive streaming over HTTP (DASH) is an effective
method for video streaming over heterogeneous networks; it
can improve the overall user satisfaction by offering several
representations of the same video content to the different
clients [1]. Each representation is encoded at a pre-defined
bit rate and/or resolution such that users can be served by
the most suitable representation in accordance with their
requirements and heterogeneous network conditions.

At the same time, the network traffic presents a high
temporal variability, which incurs congestion during peak
traffic hours and under-utilization during off-peak hours. To
reduce the peak traffic, caching (or pre-fetching) is proposed
to utilize the storage space of edge servers across the network
and to perform content placement during off-peak hours,
thereby smoothing out the temporal traffic variability and
reducing congestion and access latencies [2]. For wireless
video streaming, caching at edge servers can greatly reduce
the service load of the base station and replace the usually
weak backhaul communications from the base station with
high-speed local links to the edge servers [3].

In this paper, we formulate a distributed caching place-
ment optimization problem for DASH based wireless video-
on-demand (VoD) streaming system with proper considera-
tion of the R-D properties of representations from different
video sequences. Specifically, we target at maximizing the
overall system utility in terms of the expected aggregate
video utility incurred by distributed caching at edge servers
under the edge servers’ storage capacity constraints. This
is achieved by the optimal assignment of DASH repre-
sentations of multiple video sources to distributed edge
servers. We further prove that the proposed distributed
wireless video caching placement optimization problem is a
submodular maximization problem subject to a knapsack
constraint, which is NP-hard. Therefore, a cost benefit
greedy algorithm is proposed in order to obtain an ap-
proximate solution with polynomial time complexity and
theoretical approximation guarantees. Simulation results
demonstrate significant video distortion reduction relative
to common caching placement schemes, and reveal that the
performance of the caching placement is greatly influenced
by the R-D properties of different video contents.



Other works in the literature address the video caching
problem but without consideration of the video content
information. For example, Jin et al. [4] apply caching
to DASH streaming, and study the optimal transcoding
and caching allocation scheme in media cloud in order to
minimize the total operational cost of delivering on-demand
adaptive video streaming, with the assumption that each
mobile user accesses one edge server for video downloading.
In [3], the wireless video caching problem with distributed
edge servers is investigated to minimize the average down-
loading delay of users, where each video has only a single
representation and each mobile user is connected to multiple
distributed edge servers; through the cooperation among
these edge servers the service load is largely transferred
from the base station to edge servers. However, these
works only focus on the operational-cost/rate perspective
and thus neglect the video content information (e.g., the
R-D properties) of the representations from different video
contents. However, it is only by carefully considering the
video content that the actual performance of the caching
system can be properly evaluated.

The rest of this paper is organized as follows. Section 2
describes the system model and optimization formulation for
the distributed wireless video caching placement problem.
In Section 3, we show that it is a submodular maximization
problem and develop an approximate caching algorithm.
Section 4 presents experimental results, and evaluates the
performance of the proposed algorithm in comparison to
common caching strategies. The concluding remarks are
given in Section 5.

2. PROBLEM FORMULATION

2.1 System Model
Consider a DASH based wireless VoD streaming system

as illustrated in Fig. 1, suppose that F different video files
each of which is encoded into M different representations are
maintained at the base station. S edge servers with certain
capabilities of pre-fetching and storing video content are
deterministically placed in the wireless coverage region of the
base station. These edge servers are geographically closer to
the mobile users and thus can enable high-density spatial
reuse of the wireless resources with high-speed localized
communication, which is usually assumed to be much faster
than the backhaul links connected to the base station [3].
For the VoD service with certain a priori knowledge of the
video popularity distribution, some popular video files can
be pre-fetched by the edge servers during the off-peak hours
to relieve the service load of the base station and to replace
the backhaul communication.

The distributed caching placement criterion is as follows.
Whenever a mobile user make a playback request for a
specific video, it attempts to download from one of its
adjacent edge servers a representation with as higher quality
as possible in accordance with the content placement and
the available download link capacity. Generally, mobile
users would like to subscribe a representation with higher
quality, while for the same representation cached in multiple
edge servers, they might want to download it from the edge
server with highest transmission rate. That is, the user will
first determine that whether there is a representation with
highest bit rate available at one of its adjacent edge servers
and the download of this representation can be supported
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Figure 1: Example of the system layout, where
mobile users are randomly distributed, while edge
servers are connected to the base station with
backhaul links and can be deterministically placed
in the coverage region.

by the link capacity. If yes, the user could download and
playback that representation; otherwise, it would make a
further determination for the representation with a smaller
bit rate. This determination will continue until an available
representation with certain bit rate is found at an edge server
or the representation with the smallest bit rate is reached.
Specifically, if the expected representation is cached at
more than one edge servers, the mobile user will choose to
download it from the edge server with the highest download
link capacity such that the downloading delay is minimized.
When no representation of the requested video is available
at any adjacent edge server, the user has to turn to the base
station for possible representation downloading. In this case,
since the transmission rate of the backhaul links connected
to the base station is much smaller than that of the local
high-speed links provided by the edge servers, the user will
only download the basic representation with the smallest
encoding bit rate.

For video files, let F = {1, 2, . . . , F} denote the set
of F video files that are provided by the base station.
For any video f ∈ F , it will be encoded into M =
{1, 2, . . . ,M} representations with each representation fm’s
encoding bit rate being Rfm . We further denote fM =
{f1, f2, . . . , fM},∀f ∈ F as the set of M representations
of video file f in a decreasing order of the encoding bit rate,
i.e., Rfi > Rfj ,∀1 ≤ i < j ≤ M . Therefore, the complete
set including all the M representations for all the F video
files can be denoted as FM = ∪f∈FfM. Without loss of
generality, in the following, we assume that each video file
has the same time duration T . Such assumption is mainly
proposed for the notational convenience, and could be easily
relaxed by breaking a single longer video files into multiple
files of the same length.

To illustrate the connection between edge servers and
mobile users, the wireless network is defined by a bipartite
graph Gsu = (S ,U , Esu), where S = {1, 2, . . . , S} represents
the set comprising S edge servers, U = {1, 2, . . . , U} denotes
the set of U mobile users, and (s, u) ∈ Esu indicates that a



wireless communication link exists from edge server s ∈ S
to mobile user u ∈ U . The download link transmission rate
of wireless link (s, u) is denoted by c(s,u). For each edge
server s ∈ S , the cache storage capability is constrained by
the capacity Bs. A probability mass function Pu,f is defined
for video file f ∈ F and mobile user u ∈ U , assuming that
user u will make independent request to video file f with
probability Pu,f .

Assuming that a representation of a video file can be either
stored completely at the edge server, or not stored at all,
the placement strategy can be represented by a bipartite
graph Gfm,s = (FM,S , Efm,s). Here, FM represents the
complete set containing all representations for all the video
files, and an edge (fm, s) ∈ Efm,s denotes that fm (i.e., the
m-th representation of video file f) is stored in the cache
of edge server s. To better understand the representation
placement strategy as shown by the bipartite graph, we can
further denote AFM×S as the FM × S adjacency matrix of
Gfm,s, such that ∀s ∈ S , afm,s = 1 indicates that an edge
(fm, s) ∈ Efm,s exists and afm,s = 0 otherwise. For a mobile
user u ∈ U , denote S(u) as its neighborhood of edge servers.
S(u) is sorted in an decreasing order of the download link
capacity, such that (i)u ∈ S(u) represents the edge server
with the i-th largest capacity of the link to mobile user u.

From the rate-distortion perspective, denote a general
rate-distortion function Dmax − Df (R) as the distortion
of video f with the encoding bit rate being R, where
Dmax and Df (R) represent a constant maximal distortion
when no video is decoded and the distortion reduction
(or quality improvement) after successful decoding the
bitstream with bit rate R, respectively. Since distributed
caching targets to shift the service load of the base station to
edge servers, the performance measure is mainly determined
by users’ satisfaction on the service purely provided by
cached contents, which can be derived as the expected
average video distortion reduction experienced by mobile
user u downloading from its adjacent edge servers:

D̄u =
F∑

f=1

M∑
m=1

|S(u)|∑
i=1

[m−1∏
n=1

|S(u)|∏
j=1

(1− afn,(j)u)

]
(1)

·

[i−1∏
j=1

(1− afm,(j)u)

]
· afm,(i)u · Pu,f ·Df (Rfm)

In Eq. (1), the term [
∏m−1

n=1

∏|S(u)|
j=1 (1− afn,(j)u)][

∏i−1
j=1(1−

afm,(j)u)] · afm,(i)u = 1 is the indicator function defined
over the set of feasible placement matrix AFM×S for the
case that the m-th representation of video file f is the
best representation that user u could find in its neighboring

edge servers (specifically, [
∏m−1

n=1

∏|S(u)|
j=1 (1 − afn,(j)u)] = 1

indicates that no representation with index smaller thanm is
at any of the adjacent edge servers), and this representation

is at the cache of edge server (i)u (specifically, [
∏i−1

j=1(1 −

afm,(j)u)] = 1 indicates that this representation is not
available at any of the edge servers with larger download
link rate than edge server (i)u).

2.2 Optimization Problem Formulation
The distributed wireless video caching placement problem

for DASH streaming can be summarized as: for a giv-
en representation set of source video files, file popularity
distribution, edge server storage capacity and the wireless

network topology, how to place the representations of all
the video files in the distributed edge servers such that the
total system utility is maximized subject to the caching
capacity constraint of each edge server. If each video file has
only one representation (i.e., DASH is not applied) and each
mobile user has only access to one edge server, the optimal
placement strategy becomes simple and straightforward.
That is, each edge server should cache as many most popular
video files as possible until its storage is full. However,
for the case of dense edge server deployment within which
each mobile user can have access to more than one edge
server, the optimal content placement strategy becomes
highly nontrivial. When DASH streaming is taken into
account and applied to the VoD system, one video file is
further encoded and stored as multiple representations with
different bit rates. The optimal placement problem in this
case becomes even more complicated.

Mathematically, this problem can be formulated as:

max
AFM×S∈{0,1}FM×S

U∑
u=1

D̄u (2a)

s.t.
F∑

f=1

M∑
m=1

afm,s ·Rfm · T ≤ Bs,∀s ∈ S (2b)

The objective in Eq. (2a) is to maximize the aggregate
video distortion reduction of all mobile users (equivalent
to minimizing the average video distortion per user, i.e.,
min [Dmax −

∑U

u=1 D̄u/U ]), and the decision variable is
the representation placement strategy represented by the
adjacency matrix AFM×S ∈ {0, 1}FM×S . The constraint in
Eq. (2b) is the cache capacity requirement constrained by
the storage of edge servers, where Bs is the storage capacity
of edge sever s and T is the time duration of video sequences.

In general, the proposed optimization problem in Eq. (2)
can be solved through integer programming. However, in
the next section, we will demonstrate that it is a constrained
maximization problem for a submodular function1, which is
NP-hard in general cases and needs very high computational
complexity to achieve the optimal solution.

3. SUBMODULARITY AND APPROXIMA-

TION ALGORITHM

3.1 Submodular Maximization
In accordance with the DASH based wireless video caching

placement problem, the finite ground set can be viewed as:

V = {V1, . . . ,Vs, . . .VS}, (3)

Vs = {vs1,1, . . . , v
s
1,M , . . . , vsf,m, . . . , vsF,1, . . . , v

s
F,M}, ∀s ∈ S

where the ground set is partitioned into S disjoint subsets.
Each subset Vs denotes the full set of all representations
of all files that may be cached on the edge server s, and
the element vsf,m represents the placement of the m-th
representation of video file f on the cache of the edge server
s. For a given adjacency matrix AFM×S, the corresponding
representation placement set A ⊆ V can be defined in such
a way that vsf,m ∈ A corresponds to the case afm,s = 1 and

1Let V be a finite ground set, and a set function g : 2V → R

is submodular iff g(X ∪{v})− g(X ) ≥ g(Y ∪{v})− g(Y) for
any sets X ⊆ Y ⊆ V and for any element v ∈ (Y \ X ).



vice versa. In terms of set function, the expected distortion
reduction function in Eq. (1) can be rewritten as:

D̄u(A) =

F∑
f=1

M∑
m=1

|S(u)|∑
i=1

[m−1∏
n=1

|S(u)|∏
j=1

(1− 1|
v
(j)u
f,n

∈A
)

]
(4)

·

[i−1∏
j=1

(1− 1|
v
(j)u
f,m

∈A
)

]
· 1|

v
(i)u
f,m

∈A
· Pu,f ·Df (Rfm)

where 1|v∈A is an indicator function, the value of which is
1 if v ∈ A and 0 otherwise.

Proposition 1. The objective function in Eq. (2a) is a
monotone submodular function over the ground set V defined
in Eq. (3).

Proof. Denote the equivalent set function of Eq. (2a)

as D(A) =
∑U

u=1 D̄u(A). It is easy to observe that D(A) is
monotone non-decreasing.

According to the property of submodularity, the summa-
tion over a set of submodular functions is also submodular.
Thus, to prove the submodularity of D(A), it is only
required to prove that for every mobile user u the set
function D̄u(A) is submodular.

Consider any two placement sets A ⊆ A′ ⊆ V. For some
edge server s = (i)u, 1 ≤ i ≤ |S(u)|, suppose adding a

new element vsf,m = v
(i)u
f,m ∈ V \ A′ to both placement sets.

That is, adding the m-th representation of video file f into
the cache of edge server s = (i)u. Next, we consider the
following two cases.

i) There exists v
(j′)u
f,n′ ∈ A′ with n′ ≤ m, i.e., according to

the placement set A′ mobile user u downloads a better or
equal quality representation n′ of video file f from the edge
server (j′)u. In this case, it can be derived from Eq. (4) that

D̄u(A
′ ∪ {v(i)uf,m })− D̄u(A

′) = 0. On the other hand, due to
the monotonicity, for the placement set A we always have

D̄u(A∪{v(i)uf,m })−D̄u(A) ≥ 0. Therefore, the relationship of

both marginal values is given by D̄u(A
′∪{v

(i)u
f,m })−D̄u(A

′) ≤

D̄u(A∪ {v
(i)u
f,m })− D̄u(A).

ii) There exists v
(j′)u
f,n′ ∈ A′ with n′ > m, i.e., according

to the placement set A′ mobile user u downloads a worse
quality representation n′ of video file f from the edge server
(j′)u. In this case, it can be derived from Eq. (4) that

D̄u(A
′ ∪ {v

(i)u
f,m }) − D̄u(A

′) = Pu,f [Df (Rfm) − Df (Rf ′
n
)].

On the other hand, for the placement set A, since A ⊆ A′,
mobile user u can only downloads representation n of file
f from the edge server (j)u with n ≥ n′. Thus, the

resulting marginal value is D̄u(A ∪ {v(i)uf,m }) − D̄u(A) =

Pu,f [Df (Rfm) − Df (Rfn)]. Since n ≥ n′, we have Rf ′
n

≥
Rfn and thus Df (Rfn′

) ≥ Df (Rfn). Therefore, the

relationship of both marginal values is given by D̄u(A
′ ∪

{v(i)uf,m }) − D̄u(A
′) ≤ D̄u(A∪ {v(i)uf,m }) − D̄u(A).

For both cases, the marginal value decreases as the set
becomes larger, which satisfies the submodularity definition.
Hence, the submodularity is proved.

In Proposition 1, we have justified that Eq. (2a) is a
submodular function. Further observing the cache storage
constraint of edge server s ∈ S in Eq. (2b), each
element vsf,m ∈ A (corresponding to the case afm,s = 1
in AFM×S) has a non-uniform cost of Rfm · T , and s has

Algorithm 1 k-Cost benefit (k-CB) greedy algorithm

For all initial sets A0 ⊆ V such that |A0| = k, implement the
following cost benefit greedy procedure:

Initialization:

1) Set V0 = V and t = 1.
Greedy Search Iteration: (at step t = 1, 2, 3, . . . )

1) Given a partial solution At−1, find

θt = max
vs
f,m

∈Vt−1\At−1

D(At−1 ∪ {vs
f,m

}) −D(At−1)

Rfm · T
(5)

with

v
st
ft,mt

= arg max
vs
f,m

∈Vt−1\At−1

D(At−1 ∪ {vs
f,m

})−D(At−1)

Rfm · T

(6)
Update and Determination:

1) Set At = At−1 ∪ {vst
ft,mt

}, and Vt = Vt−1, if

F∑

f=1

M∑

m=1

1|
v
st
f,m

∈(At−1∩Vst
)∪{v

st
ft,mt

} ·Rfm · T ≤ Bst ; (7)

otherwise, set At = At−1, and Vt = Vt−1 \ {vst
ft,mt

}.

2) If Vt \ At �= ∅, set t = t + 1 and return to the greedy
search iteration; otherwise, stop the iteration.
The solution is obtained and output as A, which has the largest

value of the objective function D(A) =
∑U

u=1 D̄u(A) over all

the possible choices of the initial sets A0 ⊆ V .

a storage budget of Bs. Such constraint can be viewed
as a knapsack constraint on the subset Vs ∈ S , and thus
the set of cache storage constraints of all the edge servers
forms a knapsack constraint on the finite ground set S .
Therefore, the distributed caching placement problem in
Eq. (2) is a submodular maximization problem subject
to a knapsack constraint, which is generally NP-hard and
requires very high computational complexity to achieve the
optimal solution by either integer programming or other
methods [5].

3.2 Approximate Algorithm
To efficiently solve the submodular maximization problem

with polynomial time complexity and theoretical approxima-
tion guarantees, the k-cost benefit (k-CB) greedy algorithm
is developed as shown in Algorithm 1, with k indicating
the size of the initial set. Specifically, the proposed k-CB
greedy algorithm considers all feasible initial sets A0 ⊆ V
of cardinality k. Starting from any initial set A0, at step t,
the cost benefit greedy procedure iteratively searches over
the remaining set Vt−1 \ At−1 and inserts into the partial
solutionAt−1 an element according to Eqs. (6) and (7), until
the remaining set reduces to an empty set. In other words,
the cost benefit procedure adds at each iteration an element
that maximizes the marginal benefit D(At−1 ∪ {vsf,m}) −

D(At−1) and cost Rfm · T ratio among all elements still
affordable with the remaining storage budget until no more
element can be added. The proposed k-CB greedy algorithm
then enumerates all initial sets A0 ⊆ V of cardinality k,
augments each of them following the cost benefit greedy
procedure, and selects the initial set achieving the largest
value of the objective function D(A) =

∑U

u=1 D̄u(A) and
sets its solution set as the final placement set A. For the
special case of k = 0, the algorithm reduces to a simple cost



benefit greedy algorithm starting with A0 = ∅.
In terms of computational complexity, the running time

of the proposed k-CB greedy algorithm is O((SFM)k+2U),
which indicates a polynomial time complexity. As the value
of k increases, the running time of the proposed algorithm
becomes larger while the performance improves. As shown
in [6], when k ≥ 3, the theoretical worst-case performance
guarantee of the proposed algorithm is 1 − 1/e, i.e., its
solution achieves at least the ratio 1 − 1/e of the optimal
objective value.

4. EXPERIMENTAL EVALUATION
In this section, we evaluate the performance of the

proposed k-CB greedy algorithm under different video file
and network settings, and illustrate its effectiveness over
the other two other schemes: 1) Femto-Greedy, the greedy
algorithm proposed in [3] to minimize the average down-
loading delay of users for wireless video content delivery
through distributed caches; and 2) Popular-Cache, each edge
server pre-fetches the most popular video files allowed by its
storage capacity. Note that one of our main contributions is
the optimal assignment of the cached contents to distributed
edge servers for multiple DASH representations, while the
femto-greedy and popular-cache algorithms only consider
one single representation for each video. To have a “fair”
comparison with the proposed algorithm, here, the femto-
greedy and popular-cache algorithms are simply extended
to facilitate multiple DASH representations as follows. The
algorithm is first individually applied to the representations
of all videos with the same representation index m, i.e.,
∪f∈Ffm. Then, we enumerate all the possible representation
index m = 1, 2, . . . ,M and choose the one achieving the
largest aggregate distortion reduction as the final solution.

4.1 Settings
First, we consider a wireless network with S = 3 edge

servers uniformly placed and U = 20 users randomly
distributed in a 100 m × 100 m square region. Assume
that the connectivity range (effective transmission range)
of each edge server is 50 m, and the network connectivity
graph is accordingly shown in Fig. 2(a). Three test video
sequences (F = 3, Crowd Run, Tractor, and Sunflower) with
1080p resolution (1920× 1080), available at [7], are selected
as the video files needed for caching. These three test video
sequences correspond to different content types, i.e., dense
object motion for Crowd Run sequence, camera movement
and medium object motion for Tractor sequence, and small
object motion for Sunflower sequence, respectively. The
distortion versus encoding bit rate curves of these three
sequences are illustrated in Fig. 2(b). Suppose that
the time duration of each video clip is T = 6 s, and
the constant maximal distortion is set as Dmax = 500.
At frame rate of 30 fps, we further encode each video
sequence into M = 3 representations with encoding rate
being {3R, 2R, R} and R = 1000 Kbps. Accordingly, the
distortion reduction in MSE after successful decoding all the
representations is listed in Table 1. Generally, it can be seen
that for video with small object motion (e.g., Sunflower),
the representation with smallest encoding bit rate introduces
a large distortion reduction (e.g., 483.2 with encoding bit
rate of 1000 Kbps) while increasing the encoding bit rate
cannot incur significant additional distortion reduction (e.g.,
only 11.4 additional distortion reduction between encoding
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Figure 2: (a) Network connectivity graph with
3 edge servers and 20 users. (b) Distortion vs.
encoding bit rate curves of the three sequences.

Table 1: Distortion reduction (in MSE) after decod-
ing representations of different video sequences

Bit rate 3000 Kbps 2000 Kbps 1000 Kbps
Crowd Run 335.9 275.4 133.3
Tractor 456.3 419.8 303.7

Sunflower 494.6 491.9 483.2

bit rate of 1000 Kbps and 3000 Kbps); and vice versa. The
storage capacity for each edge server is set to Bs = 4RT . For
the video file popularity, we further assume that these three
sequences follow a Zipf distribution with parameter 0.56 [8],
i.e., the requesting probabilities of Crowd Run, Tractor, and
Sunflower sequences are 0.45, 0.31, and 0.24, respectively.

4.2 Results
In Table 2, we compare the actual running time in

simulation, theoretical computational complexity, and the
average distortion reduction per user achieved by different
algorithms. It can be seen from Table 2 that in terms of aver-
age distortion reduction per user, the proposed k-CB greedy
algorithm generally outperforms the other two comparison
algorithms. Specifically, popular-cache and femto-greedy
algorithms result in 0.75 and 0.86 approximation solution
of the optimal solution that is obtained by the exhaustive
search over all possible feasible solution sets. For the case
of k = 0 and k = 1, the proposed algorithm advances the
approximation ratio to 0.96 and 0.99, respectively. When k
becomes large, e.g. k = 2, 3, the proposed algorithm can
even achieve the optimal solution. From the perspective
of running time, the complexity of exhaustive search is
exponential and becomes not feasible with the increment of
the number of video files and the network scale. In contrast,
the proposed k-CB greedy algorithm has polynomial time
complexity and the running time will be reduced as k
decreases. Specifically, when k = 0, the proposed algorithm
achieves quadratic time complexity the same as femto-
greedy algorithm but the performance is better. Although
the running time of poplar-cache algorithm is smallest, its
performance is also the worst. Therefore, we can seek
the tradeoff between the algorithm performance and the
running time by adapting the value of k of the proposed
k-CB greedy algorithm. In practice, to have a near optimal
approximation solution with affordable running time, we
could set k to 0 or 1 for large scale network.

To gain further insight into the difference between dif-
ferent algorithms, in Table 3, we list the placement sets of
edge servers obtained by the optimal solution (3- or 2-CB
greedy), femto-greed and popular-cache algorithms. Within
each vector, the three rows from top to bottom correspond



Table 2: Comparison on computational complexity
and performance of different algorithms

Algorithm Time Computation
1

U

U∑
u=1

D̄u

(s) complexity
Exhaust search 2068.9 Exponential 361.8 (100%)
3-CB Greedy 301.2 O((SFM)5U) 361.8 (100%)
2-CB Greedy 38.2 O((SFM)4U) 361.8 (100%)
1-CB Greedy 2.6 O((SFM)3U) 357.4 (99%)
0-CB Greedy 0.3 O((SFM)2U) 347.5 (96%)
Femto-Greedy 0.3 O((SFM)2U) 312.0 (86%)
Popular-Cache 0.05 O(SFM) 270.6 (75%)

Table 3: Placement strategy for edge servers S1 −S3

obtained by different algorithms
Algo. S1 S2 S3

Opt.

(
0 1 0
0 0 1
0 0 1

) (
0 0 0
1 0 0
0 0 1

) (
1 0 0
0 0 0
0 0 1

)

Femto.

(
0 1 0
0 1 0
0 0 0

) (
0 1 0
0 0 0
0 1 0

) (
0 1 0
0 1 0
0 0 0

)

Pop.

(
0 1 0
0 1 0
0 0 0

) (
0 1 0
0 1 0
0 0 0

) (
0 1 0
0 1 0
0 0 0

)

to Crowd Run, Tractor, and Sunflower sequences, while the
three columns from left to right stand for the encoding rate
of {3R, 2R, R}. The fundamental reason why the proposed
algorithm outperforms the others can be revealed as follows.
In addition to the consideration of video file popularity and
the cooperation among different edge servers, the caching
decision of representations for different videos can be further
adapted by the proposed algorithm according to the video
content information. For video sequence with small motion
(e.g., Sunflower), the proposed algorithm only allocates the
basic representation with smallest bit rate R at each edge
server, while for video sequences with larger motion (e.g.,
Crowd Run and Tractor), representations with larger bit
rate 2R or 3R are allocated at some edge servers to gain
larger distortion reduction.

Next, we conduct simulations for larger scale settings,
with F = 10 video files and M = 3 representations for
each video, U = 300 users randomly placed in a 400 m
× 400 m square region. The connectivity range and the
storage capacity of each edge server are set to 70 m and
Bs = 4RT , and all the other parameters are the same as
previous. In Fig. 3, the average distortion reduction per
user under different algorithms is shown for different edge
server numbers S = 16, 20, 25, respectively. Again, it is
verified that the proposed algorithm outperforms the other
two comparison algorithms for different number of S. It
can also be observed that as the number of S increases, the
performance of popular-cache would not change since each
edge server always separately pre-fetches the most popular
video files, while femto-greedy and the proposed algorithm
could gradually benefit from a denser deployment of the edge
servers within the wireless region.

5. CONCLUSIONS
In this paper, we studied a distributed caching placement

optimization problem for DASH based wireless VoD stream-
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Figure 3: Average distortion reduction per user (in
MSE) vs. the number of edge servers.

ing system in order to maximize the expected aggregate
video distortion reduction. The problem proved to be a
submodular maximization problem subject to a knapsack
constraint. An approximate caching algorithm has been pro-
vided, as a tradeoff between approximation performance and
running time. Experimental results have shown significant
video distortion reduction relative to existing schemes. We
also found that the performance of the caching placement
is greatly affected by the R-D properties of different video
contents. Future research directions include the distributed
caching placement strategy adapted to other QoE metrics,
such as startup delay and quality variations.
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